让LTE-A比以往几代技术速度大大提升的是两种技术:载波聚合与MIMO天线。这两者都不属于新技术,但都可能在实现5G的潜力中起到非常大的作用。
就其本身而言,载波聚合通过从多个本地基站接收信号提高下载速度,而不仅仅是从附近信号最强的基站接收信号。这些不同的波段聚到一起之后所能传输的数据量大大提高。在LTE-A技术中,可以让五个高达20MHz的带宽载波单元聚集成100MHz单载波。
频段是全球性短缺资源,大部分移动电信公司都已经把能够利用的频率都利用了。其结果是,他们的频段很少是连续的。幸运的是,载波聚合不但让移动运营商提高了其数据传输速率,而且可以让他们把不同的频段拼接到一起。在5年后5G服务进入更拥挤的无线世界的时候,载波聚合甚至会变得更重要。
MIMO(多输入/多输出)也使用了同样的方式。MIMO通过两个或多个天线传输两个或多个数据流,让接收天线处理所有的传入信号,而不只是最强的信号。这就好像用高速公路代替单车道的乡间公路。目前的MIMO应用方式通常是在发送端和接收端都使用三四个天线。如果两端都使用几十甚至上百个天线,将大大提高下载速率,更有效地利用可用频段。
如今的无线设备使用的是拥挤的700MHz~2.6GHz频道范围。这并不是说,5G推出之后,今天的4G甚至3G网络所使用的频道就会被空出来。移动运营商将会继续为数以百万计没有立即升级到最新设备的用户继续提供传统业务,这些用户可能好几年都不会升级设备。
最有可能的情况是,5G将从今天的UHF(特高频)频段转移到3GHz和30GHz之间的SHF(超高频)频段,甚至是30GHz和300GHz之间的EHF(极高频)频段。目前这些频段被用于卫星电视、微波中继链路、空中交通雷达、射电天文学和业余无线电。
5G技术将需要比目前的手机信号发射塔更靠近用户的基站。这已经是一个正在发生的趋势了。到目前为止,微蜂窝已被主要用于建筑物内解决手机信号差的问题。为了处理5G数据,现有手机基站之间的空白地带需要部署数百个微蜂窝接入点。这些小天线盒会被安装在路灯柱子上或者建筑物内,几乎没有人会注意到它们,更不会有人反对安装,而架设新的手机信号发射塔往往就不一样了。